Theoretical study of pairing symmetry in iron-based superconductors

S.S. JENA¹, S. K. AGARWALLA¹ and G.C.ROUT^{2*}

¹Dept of Applied physics and Ballistics, F.M.University, Balasore 756019, Odisha, India, Physics Enclave, Plot No. - 664/4825, Lane-4A, Shree Vihar, Chandrasekharpur, PO- Patia, Bhubaneswar- 751031, Odisha, India, Mob: 09937981694.

*Corresponding author: Email Id: gcr@iopb.res.in, ¹Email Id: sushree@iopb.res.in, Mob: 08895084073.

Received: 2.12.2015; Accepted: 11.01.2016

Abstract. For the newly discovered iron-based superconductors, we propose a one band model for conduction band with first and second-nearest-neighbor electron hoppings with s-wave, d-wave and s_{\pm} -wave pairing symmetries for the superconductivity. We have calculated the Green's functions from which the temperature dependent superconducting (SC) gap and tunneling conductance are calculated and computed numerically taking 100×100 grid points of electron momentum throughout the Brillouin zone. The evolution of the SC gap and the tunneling conductance spectra are investigated for different model parameters of the system.

Keywords: Superconducting material, pnictides

PACS: 74.20.Pq, 74.70.Xa

[Full Paper]